PROGRAMME SPECIFICATION

Bachelor of Engineering with Honours in Mechanical Engineering

Awarding institution: Liverpool John Moores University
Teaching institution: LJMU
UCAS Code: H301
JACS Code: H300
Programme Duration: Full-Time: 3 Years, Sandwich Thick: 4 Years
Language of Programme: All LJMU programmes are delivered and assessed in English
Subject benchmark statement: Engineering Council UK Spec
Programme accredited by: I MechE
Description of accreditation: The programme partially fulfils the educational requirements for CEng
Validated target and alternative exit awards:
- Bachelor of Engineering with Honours in Mechanical Engineering
- Bachelor of Engineering Honours (SW) in Mechanical Engineering
- Diploma of Higher Education in Mechanical Engineering
- Diploma in Higher Education (SW) in Mechanical Engineering
- Certificate of Higher Education in Mechanical Engineering

Programme Leader: Allan Carrier

Educational aims of the programme

The B.Eng. programme in Mechanical Engineering is designed to partially fulfill the educational requirements for Chartered Engineer status. It is designed to develop a high level of technical expertise together with the emotional intelligence to be able to practice successfully as a professional engineer in a modern interdisciplinary engineering environment. Graduate engineers are increasingly expected to take on important technical leadership and management responsibilities early in their careers and the knowledge and skills gained from this programme are designed to produce graduates who are able to make an immediate contribution to their employers organisations.

The programme aims to:

- Deliver the educational experience in which students can develop their knowledge of engineering science, core engineering principles and fundamental underpinning subjects such as mathematics and computation.
- Develop students confidence to analyse challenging technical problems and to further develop their core engineering knowledge and skills through the investigation and development of credible and robust solutions.
- Provide students with appropriate support and encouragement to develop the necessary skills such that they can study independently and take responsibility for their own learning and subsequent professional development.
- Provide engineering graduates with a range of highly relevant transferable skills such as team working, communication, management, problem solving, computing and technical computing.
- Provide a programme of study that fully meets the requirements of the Engineering Councils UK Standard for Professional Engineering Competence (UKSpec) and partially qualifies the successful graduate for the attainment of the Engineering Council Chartered Engineer status after completion of an appropriate period of industrial experience.
- Produce graduates with a depth, breadth of knowledge and understanding of mechanical engineering, management and teamwork to enable them to rapidly assume technical leadership and management roles.
- Encourage students to fully engage with the World of Work programme, including World of Work Skills Certificate and, as a first step towards this, to complete Bronze (Self Awareness) Statement.
- For students undertaking a placement year the aim is to provide students with an extended period of work experience at an approved partner that will complement their programme of study at LJMU. This will give the
students the opportunity to develop professional skills relevant to their programme of study, as well as attitude and behaviours necessary for employment in a diverse and changing environment.

The programme is currently accredited by the Institute of Mechanical Engineers and meets the requirements of the Engineering Councils ‘UK Standard for Professional Engineering Competence’ (UKSpec).

Alternative Exit/ Interim Award Learning Outcomes - Certificate of Higher Education

A student who is eligible for this award will be able to:

Undertake suitable basic mathematical analysis.

Apply the basic principles of applied mechanics, thermodynamics and fluid mechanics, materials science and electrical engineering to simplified engineering problems.

Design and manufacture simple engineering components and assemblies.

Demonstrate key skills appropriate to the professional engineer.

Alternative Exit/ Interim Award Learning Outcomes - Diploma of Higher Education

A student who is eligible for this award will be able to:

Undertake advanced mathematical and computational studies of engineering systems and problems.

Demonstrate the application of intermediate level applied mechanics, thermodynamics and fluid mechanics, and electrical engineering from to the solution of standard engineering problems.

Demonstrate the intermediate engineering skills that will be required for further study.

Demonstrate a competence in technical reporting and an ability to analyse and present engineering data.

A student who successfully completes a placement year will be eligible for the Sandwich award and will, in addition to the above, be able to demonstrate the professional and personal skills necessary for effective employment within a professional environment.

Target award Learning Outcomes - Bachelor of Engineering with Honours

A student successfully completing the programme of study will have acquired subject knowledge and understanding as well as skills and other attributes.

Knowledge and understanding

A student who is eligible for this award will be able to:

A1. Demonstrate their knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics. They must have an appreciation of the wider multidisciplinary engineering context and its underlying principles. They must appreciate the social, environmental, ethical, economic and commercial considerations affecting the exercise of their engineering judgment.

A2. Demonstrate a knowledge and understanding of scientific principles and methodology necessary to underpin their education in mechanical engineering, to enable appreciation of its scientific and engineering context, and to support their understanding of historical, current, and future developments and technologies.

A3. Illustrate a knowledge and understanding of mathematical principles necessary to underpin their education in mechanical engineering and related engineering disciplines and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems.

A4. Demonstrate an ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of mechanical and related engineering disciplines.

A5. Understand engineering principles and the ability to apply them to analyse key engineering processes.

A6. Identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques.

A7. Demonstrate an ability to apply quantitative methods and computer software relevant to mechanical and related engineering disciplines to solve engineering problems.

Teaching, learning and assessment methods used to enable outcomes to be achieved and demonstrated

Acquisition of underpinning knowledge is achieved mainly through lectures and directed student-centred learning. Student-centred learning is used where appropriate resource material is available. Understanding is
reinforced through case-studies.

Assessment

Testing of the knowledge base is through a combination of unseen written examinations, coursework in the form of case-study reports and coursework assignment submissions.

Skills and other attributes

Intellectual Skills

A student who is eligible for this award will be able to:

B1. Apply appropriate quantitative science and engineering tools to the analysis of problems. They must be able to demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs. They must be able to comprehend the broad picture and thus work with an appropriate level of detail.

B2. Demonstrate an understanding of and ability to apply a systems approach to engineering problems.

B3. Demonstrate a knowledge and understanding of the commercial and economic context of engineering processes.

B4. Illustrate a knowledge of management techniques which may be used to achieve engineering objectives within that context.

B5. Understand the requirement for engineering activities to promote sustainable development.

B6. Demonstrate an awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

B7. Understand the need for a high level of professional and ethical conduct in engineering.

Teaching, learning and assessment methods used to enable outcomes to be achieved and demonstrated

The students must appreciate the social, environmental, ethical, economic and commercial considerations affecting the exercise of their engineering judgement.

Professional practical skills

A student who is eligible for this award will be able to:

C1. Apply practical engineering skills acquired through, for example, work carried out in laboratories and workshops; in industry through supervised work experience; in individual and group project work; in design work; and in the development and use of computer software in design, analysis and control. Evidence of group working and of participation in a major project is expected.

C2. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues.

C3. Understand customer and user needs and the importance of considerations such as aesthetics.

C4. Identify and manage cost drivers.

C5. Demonstrate creativity to establish innovative solutions.

C6. Illustrate creativity to establish innovative solutions.

C7. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

C8. Manage the design process and evaluate outcomes.

C9. Demonstrate a knowledge of the characteristics of particular equipment, processes or products.

C10. Develop engineering workshop and laboratory skills.

C11. Demonstrate an understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

Teaching, learning and assessment methods used to enable outcomes to be achieved and demonstrated

Engineering design, analysis and practical skills are taught almost exclusively by individual and group project work.
work supported by a lecture programme appropriate to the demands of the project.

Assessment

Engineering design and practical skills are assessed by individual and group written design project reports, student presentations and presentations using computer graphics.

Transferable / key skills

A student who is eligible for this award will be able to:

D1. The student must have developed transferable skills including problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills.

D2. Understand the use of technical literature and other information sources.

D3. Demonstrate an awareness of nature of intellectual property and contractual issues.

D4. Demonstrate an understanding of appropriate codes of practice and industry standards.

D5. Illustrate an awareness of quality issues.

D6. Demonstrate an ability to work with technical uncertainty.

Teaching, learning and assessment methods used to enable outcomes to be achieved and demonstrated

The economic, Social and Environmental context of engineering operations is delivered by means of lectures and case studies. The use of appropriate case study material is an essential part of teaching in this area.

Assessment

Assessment is via a combination of unseen written examinations and coursework in the form of case-study reports.

Alternative target awards

A student who is eligible for the following awards will be able to:

Bachelor of Engineering Honours (SW) in Mechanical Engineering -

In addition to the learning outcomes for the main target award, demonstrate the professional and personal skills necessary for effective employment within a professional environment.

Programme structure - programme rules and modules

Programme rules

The marks from Level 5 and 6 assessments contribute to the final degree classification i.e. 25% of Level 5 marks and 75% of Level 6.

Option Modules

Student are required to select two option modules at L6, one from each semester. The options are:-

Semester One

Fluid Dynamics and Heat Transfer

Materials Engineering

Manufacturing Processes and Industrial Automation

Vehicle Dynamics

Semester Two

Thermodynamics

Structural Integrity

Dynamics and Control

Students have the option to undertake a placement year. The placement year, module 5111MECH, will follow Level 5 and students will be enrolled on a 480 credit honours sandwich programme. The Level 5 mean for the final award mark will be calculated based upon the 240 credits at Level 5. Students successfully completing the assessment of the placement year are eligible for a Sandwich award.

Students not undertaking a placement year are registered on the non-sandwich version of the programme and will have the opportunity of an additional study year abroad following Level 5. Students will be enrolled on a 480
credit honours with study abroad programme. Of those 480 credits, 120 will be taken via a Level 5 study abroad module 5112MECH. The modules to be studied in the host institution must be agreed in advance. The Level 5 mean for the final award mark will be calculated based upon the 240 credits at Level 5.

Level 6

<table>
<thead>
<tr>
<th>Potential Awards on completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Engineering with Honours</td>
</tr>
<tr>
<td>Award Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>6101MECH Engineering Project (40 credits)</td>
<td>6108MECH Fluid Dynamics and Heat Transfer (10 credits)</td>
</tr>
<tr>
<td>6102MECH Engineering Analysis (20 credits)</td>
<td>6109MECH Thermodynamics (10 credits)</td>
</tr>
<tr>
<td>6103MECH Mechanical Engineering Design 3 (20 credits)</td>
<td>6110MECH Materials Engineering (10 credits)</td>
</tr>
<tr>
<td>6104MECH Industrial Management (20 credits)</td>
<td>6111MECH Structural Integrity (10 credits)</td>
</tr>
<tr>
<td>5102MECH Engineering Mathematics 2 (10 credits)</td>
<td>6112MECH Manufacturing Processes and Industrial Automation (10 credits)</td>
</tr>
<tr>
<td>5103MECH Materials and Processes (10 credits)</td>
<td>613MECH Dynamics and Control (10 credits)</td>
</tr>
<tr>
<td>5104MECH Applied Mechanics 2 (20 credits)</td>
<td>6114MECH Vehicle Dynamics (10 credits)</td>
</tr>
<tr>
<td>5105MECH Thermodynamics and Fluid Mechanics 2 (20 credits)</td>
<td>100 core credits at level 6</td>
</tr>
<tr>
<td>5106MECH Mechanical Engineering Design 2 (20 credits)</td>
<td>20 option credits at level 6</td>
</tr>
<tr>
<td>5107MECH Engineering Practice 2 (20 credits)</td>
<td>120 core credits at level 5</td>
</tr>
<tr>
<td>5108MECH Mechatronics (20 credits)</td>
<td>0 option credits at level 5</td>
</tr>
</tbody>
</table>

Level 5

<table>
<thead>
<tr>
<th>Potential Awards on completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
</tr>
<tr>
<td>Award Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>5102MECH Engineering Mathematics 2 (10 credits)</td>
</tr>
<tr>
<td>5103MECH Materials and Processes (10 credits)</td>
</tr>
<tr>
<td>5104MECH Applied Mechanics 2 (20 credits)</td>
</tr>
<tr>
<td>5105MECH Thermodynamics and Fluid Mechanics 2 (20 credits)</td>
</tr>
<tr>
<td>5106MECH Mechanical Engineering Design 2 (20 credits)</td>
</tr>
<tr>
<td>5107MECH Engineering Practice 2 (20 credits)</td>
</tr>
<tr>
<td>5108MECH Mechatronics (20 credits)</td>
</tr>
</tbody>
</table>

Level 4

<table>
<thead>
<tr>
<th>Potential Awards on completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
</tr>
<tr>
<td>Award Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101MECH Engineering Mathematics 1a (10 credits)</td>
</tr>
<tr>
<td>4102MECH Engineering Mathematics 1b (10 credits)</td>
</tr>
<tr>
<td>4103MECH Applied Mechanics 1 (20 credits)</td>
</tr>
<tr>
<td>4104MECH Thermodynamics and Fluid Mechanics 1 (20 credits)</td>
</tr>
<tr>
<td>4105MECH Materials (20 credits)</td>
</tr>
<tr>
<td>4106MECH Engineering Practice 1 (20 credits)</td>
</tr>
<tr>
<td>4107MECH Electrical and Electronic Engineering (20 credits)</td>
</tr>
</tbody>
</table>

Information about assessment regulations

All programmes leading to LJMU awards operate within the University's Academic Framework. https://www.ljmu.ac.uk/about-us/public-information/academic-quality-and-regulations/academic-framework

Opportunities for work-related learning (location and nature of...
activities)

Students are encouraged to undertake a year's industrial placement between Level 5 and 6. There is a further opportunity to undertake summer placements between academic years to gain valuable industrial experience. There are also opportunities to complete industrially based projects via individual engineering projects at Level 6.

Criteria for admission

A/AS Level
Applicants should have or expect to obtain a total of 112 UCAS points. At A2-level, applicants are expect to gain at least 64 points from Mathematics and one of following; (Physics, Chemistry, Computing, Further Maths, Electronics or Engineering).

BTEC National Diploma
BTEC Extended Diploma
Applicants should have or expect to obtain a total of 112 UCAS points (DDM), in an Engineering discipline with a distinction grade in the Further Mathematics unit. Specific optional units must also be completed, please contact the Faculty of Engineering and Technology (FET) for more information

BTEC Diploma / 90 Credit Diploma / Subsidiary Diploma /Certificate
To the value of 112 UCAS points when combined with other qualifications. Must be in an Engineering discipline. A Distinction grade in the Further Mathematics unit is required.

AVCE
Applicants should have or expect to obtain a total of 112 UCAS points. At A2-level, applicants should expect to obtain at least two awards and gain at least 64 points from mathematics and a scientific or technical subject relevant to the intended degree (e.g. Physics).

Irish Leaving Certificate
Applicants should have or expect to obtain a total of 112 UCAS points overall including a grade A1 in Higher Level Mathematics and grade A1 in another relevant technical subject at Higher Level eg. Physics.

Scottish Higher
Applicants should have or expect to obtain a total of 112 UCAS points. At higher-level or advanced higher-level, applicants should expect to obtain at least two awards and gain at least 64 points, from Mathematics and one of the following; Physics, Chemistry, Computing, Further Maths, Electronics or Engineering.

International Baccalaureate
Applicants should have or expect to obtain the equivalent of 112 UCAS points (26 IB Diploma points) overall with 5 IB points in HL Mathematics and 5 IB points in HL Physics.

Other
Applicants should have five GCSE (or equivalent) passes of at least grade C including Mathematics and English (or IELTS 6.0).

Mature entry
We welcome applications from highly motivated mature students with relevant experience but without the necessary formal qualifications. All applications will be considered on an individual basis.

Overseas qualifications
Applicants offering other awards will be considered on an individual basis in line with the agreed entry criteria.

External Quality Benchmarks
All programmes leading to LJMU awards have been designed and approved in accordance with the UK Quality Code for Higher Education, including the Framework for Higher Education Qualifications in the UK (FHEQ) and subject benchmark statements where applicable.

The University is subject to periodic review of its quality and standards by the Quality Assurance Agency (QAA) Published review reports are available on the QAA website at www.qaa.ac.uk

Programmes which are professionally accredited are reviewed by professional, statutory and regulatory bodies (PSRBs) and such programmes must meet the competencies/standards of those PSRBs.

Support for students and their learning
The University aims to provide students with access to appropriate and timely information, support and guidance to ensure that they are able to benefit fully from their time at LJMU. All students are assigned a Personal Tutor to provide academic support and when necessary signpost students to the appropriate University support
services.

Students are able to access a range of professional services including:

• Advice on practical aspects of study and how to use these opportunities to support and enhance their personal and academic development. This includes support for placements and careers guidance.

• Student Advice and Wellbeing Services provide students with advice, support and information, particularly in the areas of: student funding and financial matters, disability, advice and support to international students, study support, accommodation, health, wellbeing and counselling.

• Students studying for an LJMU award at a partner organisation will have access to local support services

Methods for evaluating and improving the quality and standards of teaching and learning

Student Feedback and Evaluation

The University uses the results of student feedback from internal and external student surveys (such as module evaluations, the NSS and PTES), module evaluation questionnaires and meetings with student representatives to improve the quality of programmes.

Staff development

The quality of teaching is assured through staff review and staff development in learning, teaching and assessment.

Internal Review

All programmes are reviewed annually and periodically, informed by a range of data and feedback, to ensure quality and standards of programmes and to make improvements to programmes.

External Examining

External examiners are appointed to programmes to assess whether:

• the University is maintaining the threshold academic standards set for awards in accordance with the FHEQ and applicable subject benchmark statements

• the assessment process measures student achievement rigorously and fairly against the intended outcomes of the programme(s) and is conducted in line with University policies and regulations

• the academic standards are comparable with those in other UK higher education institutions of which external examiners have experience

• the achievement of students are comparable with those in other UK higher education institutions of which the external examiners have experience

and to provide informative comment and recommendations on:

• good practice and innovation relating to learning, teaching and assessment observed by external examiners

• opportunities to enhance the quality of the learning opportunities provided to students

Please note:

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content, teaching, learning and assessment methods of each module can be found in module and programme guides.