Master of Engineering in Mechanical Engineering with Management

Awarding institution: Liverpool John Moores University
Teaching institution: LJMU
UCAS Code: 2L46
JACS Code: H300
Programme Duration: Full-Time: 4 Years, Sandwich Thick: 5 Years
Language of Programme: All LJMU programmes are delivered and assessed in English
Subject benchmark statement: Engineering Council UK Spec
Programme accredited by:
Description of accreditation:
Validated target and alternative exit awards:
- Master of Engineering in Mechanical Engineering with Management
- Master of Engineering (SW) in Mechanical Engineering with Management
- Bachelor of Engineering with Honours in Mechanical Engineering with Management
- Bachelor of Engineering Honours (SW) in Mechanical Engineering with Management
- Diploma of Higher Education in Mechanical Engineering with Management
- Diploma in Higher Education (SW) in Mechanical Engineering with Management
- Certificate of Higher Education in Mechanical Engineering with Management

Programme Leader: Allan Carrier

Educational aims of the programme

The MEng programme in Mechanical Engineering with Management fulfils all the educational requirements for Chartered Engineer status. It is designed to develop a high level of technical expertise together with the emotional intelligence to be able to practice successfully as a professional engineer in a modern interdisciplinary engineering environment. Graduate engineers are increasingly expected to take on important technical leadership and management responsibilities early in their careers and the knowledge and skills gained from this programme are designed to produce graduates who are able to make an immediate contribution to their employers organisations.

The programme aims to:
- Develop students transferable skills and professional behavioural traits above those associated with a M.Eng graduate that will allow students that complete the programme to hold responsible technical and managerial roles within a range of mechanical engineering and associated industries.
- Deliver the educational experience in which students can develop their knowledge of engineering science, core engineering principles, fundamental underpinning subjects such as mathematics and computation and in addition modern management techniques.
- Develop students confidence to analyse challenging technical problems and to further develop their core engineering knowledge and skills through the investigation and development of credible and robust solutions.
- Provide students with appropriate support and encouragement to develop the necessary skills such that they
can study independently and take responsibility for their own learning and subsequent professional development.

- Provide engineering graduates with a range of highly relevant transferable skills such as team working, communication, management, problem solving, computing and technical computing.

- Provide a programme of study that fully meets the requirements of the Engineering Councils UK Standard for Professional Engineering Competence (UKSpec).

- Produce graduates with an increased depth, breadth of knowledge and understanding of mechanical engineering, modern management and teamwork to enable them to rapidly assume technical leadership and management roles.

- Encourage students to fully engage with the World of Work programme, including World of Work Skills Certificate and, as a first step towards this, to complete Bronze (Self Awareness) Statement.

- For students undertaking a placement year the aim is to provide students with an extended period of work experience at an approved partner that will complement their programme of study at LJMU. This will give the students the opportunity to develop professional skills relevant to their programme of study, as well as attitude and behaviours necessary for employment in a diverse and changing environment.

The programme meets the requirements of the Engineering Councils ‘UK Standard for Professional Engineering Competence’ (UKSpec).

Alternative Exit/Interim Award Learning Outcomes - Certificate of Higher Education

A student who is eligible for this award will be able to:

- Undertake suitable basic mathematical analysis.
- Apply the basic principles of applied mechanics, thermodynamics and fluid mechanics, materials science and electrical engineering to simplified engineering problems.
- Design and manufacture simple engineering components and assemblies.
- Demonstrate key skills appropriate to the professional engineer.

Alternative Exit/Interim Award Learning Outcomes - Diploma of Higher Education

A student who is eligible for this award will be able to:

- Undertake advanced mathematical and computational studies of engineering systems and problems.
- Demonstrate the application of intermediate level applied mechanics, thermodynamics and fluid mechanics, and electrical engineering from to the solution of standard engineering problems.
- Demonstrate the intermediate engineering skills that will be required for further study.
- Demonstrate a competence in technical reporting and an ability to analyse and present engineering data.

A student who successfully completes a placement year will be eligible for the Sandwich award and will, in addition to the above, be able to demonstrate the professional and personal skills necessary for effective employment within a professional environment.

Alternative Exit/Interim Award Learning Outcomes - Bachelor of Engineering Honours (SW)

A student who is eligible for this award will be able to:

- Demonstrate a detailed understanding of modern engineering techniques and management skills, together with a detailed understanding of their chosen specialism that is at the forefront of the Mechanical Engineering with Management discipline and informed by research.
- Use established techniques of analysis and enquiry to solve problems within the field of Mechanical Engineering with Management.
- Devise and sustain arguments and solve problems using ideas and techniques that are at the forefront of the Mechanical Engineering with Management discipline.
- Demonstrate an appreciation of the ambiguity, uncertainty and limitations of their knowledge.
- Demonstrate the professional and personal skills necessary for effective employment within a professional environment.

Alternative Exit/Interim Award Learning Outcomes - Bachelor of Engineering with Honours

A student who is eligible for this award will be able to:
Demonstrate a detailed understanding of to modern engineering techniques and management skills, together with a detailed understanding of their chosen specialism that is at the forefront of the discipline and informed by research.

Use established techniques of analysis and enquiry to solve problems within the field of Mechanical Engineering with Management.

Devise and sustain arguments and solve problems using ideas and techniques that are at the forefront of the Mechanical Engineering with Management discipline.

Demonstrate an appreciation of the ambiguity, uncertainty and limitations of their knowledge.

Target award Learning Outcomes - Master of Engineering

A student successfully completing the programme of study will have acquired the following subject knowledge and understanding as well as skills and other attributes.

A student who is eligible for this award will be able to:

1. Demonstrate their knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics. They must have an appreciation of the wider multidisciplinary engineering context and its underlying principles. They must appreciate the social, environmental, ethical, economic and commercial considerations affecting the exercise of their engineering judgment.

2. Demonstrate a comprehensive understanding of the scientific principles of mechanical engineering, modern management and related engineering disciplines.

3. Demonstrate comprehensive knowledge and understanding of mathematical and computer models relevant to the mechanical, management and related engineering disciplines, and an appreciation of their limitations.

4. Demonstrate an understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

5. Demonstrate an awareness of developing technologies related to mechanical engineering and management.

6. Use fundamental knowledge to investigate new and emerging technologies.

7. Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

8. Apply mathematical and computer-based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

9. Apply appropriate quantitative science, engineering and management tools to the analysis of problems. They must be able to demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs. They must be able to comprehend the broad picture and thus work with an appropriate level of detail.

10. Demonstrate an ability to make general evaluations of commercial risks through some understanding of the basic of such risks.

11. Demonstrate an extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

12. Understand the requirement for engineering activities to promote sustainable development.

13. Demonstrate an awareness of the framework of relevant legal requirements governing engineering and management activities, including personnel, health, safety, and risk (including environmental risk) issues.

14. Understand the need for a high level of professional and ethical conduct in engineering.

15. Illustrate an understanding of and the ability to apply a systems approach to engineering problems.

16. Apply practical engineering and management skills acquired through, for example, work carried out in laboratories and workshops; in industry through supervised work experience; in individual and group project work; in design work; and in the development and use of computer software in design, analysis and control. Evidence of group working and of participation in a major project is expected.

17. Demonstrate a thorough understanding of current practice and its limitations and some appreciation of likely new developments.

18. Demonstrate an extensive knowledge and understanding of a wide range of engineering materials and components.

19. Understand the context in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc.).

20. Demonstrate a wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

21. Illustrate an understanding of customer and user needs and the importance of considerations such as
aesthetics.

22. Identify and manage cost drivers
23. Generate an innovative design for products, systems, components or processes to fulfil new needs.
24. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
25. Manage the design process and evaluate outcomes.
26. Demonstrate transferable skills include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills.
27. Demonstrate use technical literature and other information sources.
28. Demonstrate an awareness of nature of intellectual property and contractual issues.
29. Demonstrate the understanding of appropriate codes of practice and industry standards.
30. Demonstrate an awareness of quality issues.
31. Apply engineering and management techniques taking account of a range of commercial and industrial constraints.

Alternative target awards

A student who is eligible for the following awards will be able to:

Master of Engineering (SW) in Mechanical Engineering with Management -

In addition to the learning outcomes above a student who is eligible for this award will be able to demonstrate the professional and personal skills necessary for effective employment within a professional environment.

Teaching, Learning and Assessment

The methods used to enable outcomes to be achieved and demonstrated are as follows:

Acquisition of underpinning knowledge is achieved mainly through lectures and directed student-centred learning. Student-centred learning is used where appropriate resource material is available. Understanding is reinforced through case-studies.

Testing of the knowledge base is through a combination of unseen written examinations, coursework in the form of case-study reports and coursework assignment submissions.

The student must appreciate the social, environmental, ethical, economic and commercial considerations affecting the exercise of their engineering judgment. They must be able to comprehend the broad picture and thus work with an appropriate level of detail.

Acquisition of Intellectual skills is achieved mainly through lectures and directed student-centred learning.

Student-centred learning is used where appropriate resource material is available. Understanding is reinforced through case-studies.

Engineering Analysis, Design and Practical Skills are developed through a combination of lectures, tutorials, practical as appropriate. Fundamental principles are delivered predominantly by lectures and laboratory classes.

More advanced techniques such as computational techniques are delivered by project work supported by a small number of lectures.

Engineering Analysis, Engineering Design and Practical Skills are assessed through a combination of assessed coursework, laboratory work, practical and project work. Design skills are assessed by individual and group written design project reports, student presentations and presentations using computer graphics.

The student must have developed transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

Assessment of transferable skills is varied throughout the programme but is mostly coursework based and incorporated in many key engineering modules.

Programme structure - programme rules and modules

The marks from level 5, 6 and 7 assessments contribute to the final degree classification i.e.10% of Level 5
marks, 30% of Level 6 marks and 60% of Level 7 marks.

Option Modules
Student are required to select two option modules at L6 totalling 20 credits, one from each semester. The options are:-

Semester One
Fluid Dynamics and Heat Transfer
Manufacturing Processes and Industrial Automation
Engineering Analysis (Note:- Engineering Analysis is a 20 credit module and if selected allows students only one option at L6)

Semester Two
Thermodynamics
Structural Integrity
Dynamics and Control

At L7 students are required to select two option modules.

Students have the option to undertake a placement year. The placement year, module 5117MECH, will follow Level 5 and students will be enrolled on a 600 credit honours sandwich programme. The Level 5 mean for the final award mark will be calculated based upon the 240 credits at Level 5. Students successfully completing the assessment of the placement year are eligible for a Sandwich award.

Students not undertaking a placement year are registered on the non-sandwich version of the programme and will have the opportunity of an additional study year abroad following Level 5. Students will be enrolled on a 600 credit honours with study abroad programme. Of those 600 credits, 120 will be taken via a Level 5 study abroad module 5118MECH. The modules to be studied in the host institution must be agreed in advance. The Level 5 mean for the final award mark will be calculated based upon the 240 credits at Level 5.

<table>
<thead>
<tr>
<th>Level 7</th>
<th>Potential Awards on completion</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Option</td>
<td>Award Requirements</td>
</tr>
<tr>
<td>7101MECH Group Project (40 credits)</td>
<td>7107MECH Finite Element Analysis (20 credits)</td>
<td>80 core credits at level 7</td>
</tr>
<tr>
<td>7114MECH Risk and Reliability (20 credits)</td>
<td>7108MECH Conventional and Alternative Energy Systems (20 credits)</td>
<td>40 option credits at level 7</td>
</tr>
<tr>
<td>7124MECH Operations Research (20 credits)</td>
<td>7110MECH Computational Fluid Dynamics (20 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7111MECH Advanced Materials and Manufacturing Processes (20 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7112MECH Structural Dynamics (20 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7113MECH Additive Manufacturing Processes (20 credits)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 6</th>
<th>Potential Awards on completion</th>
<th>Award Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Option</td>
<td></td>
</tr>
<tr>
<td>6101MECH Engineering Project (40 credits)</td>
<td>6102MECH Engineering Analysis (20 credits)</td>
<td>100 core credits at level 6</td>
</tr>
<tr>
<td>6103MECH Mechanical Engineering Design 3 (20 credits)</td>
<td>6108MECH Fluid Dynamics and Heat Transfer (10 credits)</td>
<td>20 option credits at level 6</td>
</tr>
<tr>
<td>6104MECH Industrial Management (20 credits)</td>
<td>6109MECH Thermodynamics (10 credits)</td>
<td></td>
</tr>
<tr>
<td>6106MECH Strategic Management (20 credits)</td>
<td>6110MECH Materials Engineering (10 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6111MECH Structural Integrity (10 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6112MECH Manufacturing Processes and Industrial Automation (10 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6113MECH Dynamics and Control (10 credits)</td>
<td></td>
</tr>
<tr>
<td>Level 5</td>
<td>Potential Awards on completion</td>
<td>Award Requirements</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Core</td>
<td>Option</td>
<td></td>
</tr>
<tr>
<td>5102MECH Engineering Mathematics 2 (10 credits)</td>
<td>120 core credits at level 5</td>
<td></td>
</tr>
<tr>
<td>5103MECH Materials and Processes (10 credits)</td>
<td>0 option credits at level 5</td>
<td></td>
</tr>
<tr>
<td>5104MECH Applied Mechanics 2 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5105MECH Thermodynamics and Fluid Mechanics 2 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5106MECH Mechanical Engineering Design 2 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5107MECH Engineering Practice 2 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5108MECH Mechatronics (20 credits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 4</th>
<th>Potential Awards on completion</th>
<th>Award Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Option</td>
<td></td>
</tr>
<tr>
<td>4101MECH Engineering Mathematics 1a (10 credits)</td>
<td>120 core credits at level 4</td>
<td></td>
</tr>
<tr>
<td>4102MECH Engineering Mathematics 1b (10 credits)</td>
<td>0 option credits at level 4</td>
<td></td>
</tr>
<tr>
<td>4103MECH Applied Mechanics 1 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4104MECH Thermodynamics and Fluid Mechanics 1 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4105MECH Materials (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4106MECH Engineering Practice 1 (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4107MECH Electrical and Electronic Engineering (20 credits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information about assessment regulations

All programmes leading to LJMU awards operate within the University's Academic Framework.
https://www.ljmu.ac.uk/about-us/public-information/academic-quality-and-regulations/academic-framework

Opportunities for work-related learning (location and nature of activities)

Students are encouraged to undertake a year long industrial placement between Level 5 and 6. There is a further opportunity to undertake summer placements between academic years to gain valuable industrial experience.

There are also opportunities to complete industrially based projects via individual engineering and management projects at Level 6 and 7, and group engineering project module at Level 7.

This work experience will help develop understanding of the world of work environment suitable for the programme and increase a student's professional practical skills.

Criteria for admission

A/AS Level
Applicants should have or expect to obtain a total of 128 UCAS points. At A2-level, applicants are expect to gain at least 80 points from Mathematics and one of following; (Physics, Chemistry, Computing, Further Maths, Electronics or Engineering).

BTEC National Diploma
BTEC National Diploma
BTEC Extended Diploma
Applicants should have or expect to obtain a total of 128 UCAS points (DDM), in an Engineering discipline with a
Distinction grade in the Further Mathematics unit. Specific optional units must also be completed, please contact the Faculty of Engineering and Technology (FET) for more information.

BTEC Diploma / 90 Credit Diploma / Subsidiary Diploma /Certificate

A Distinction grade in the Further Mathematics unit is required.

AVCE
Applicants should have or expect to obtain a total of 128 UCAS points. At A2-level, applicants should expect to obtain at least two awards and gain at least 80 points from mathematics and a scientific or technical subject relevant to the intended degree (e.g. Physics).

Irish Leaving Certificate
Applicants should have or expect to obtain a total of 128 UCAS points overall including a grade A1 in Higher Level Mathematics and grade A1 in another relevant technical subject at Higher Level eg. Physics.

Scottish Higher
Applicants should have or expect to obtain a total of 128 UCAS points. At higher-level or advanced higher-level, applicants should expect to obtain at least two awards and gain at least 80 points, from Mathematics and one of the following: Physics, Chemistry, Computing, Further Maths, Electronics or Engineering.

International Baccalaureate
Applicants should have or expect to obtain the equivalent of 128 UCAS points (26 IB Diploma points) overall with 5 IB points in HL Mathematics and 5 IB points in HL Physics.

Other
Applicants should have five GCSE (or equivalent) passes of at least grade C including Mathematics and English (or IELTS 6.0).

Mature entry
We welcome applications from highly motivated mature students with relevant experience but without the necessary formal qualifications. All applications will be considered on an individual basis.

Overseas qualifications
Applicants offering other awards will be considered on an individual basis in line with the agreed entry criteria.

External Quality Benchmarks
All programmes leading to LJMU awards have been designed and approved in accordance with the UK Quality Code for Higher Education, including the Framework for Higher Education Qualifications in the UK (FHEQ) and subject benchmark statements where applicable.

The University is subject to periodic review of its quality and standards by the Quality Assurance Agency (QAA)
Published review reports are available on the QAA website at www.qaa.ac.uk

Programmes which are professionally accredited are reviewed by professional, statutory and regulatory bodies (PSRBs) and such programmes must meet the competencies/standards of those PSRBs.

Support for students and their learning
The University aims to provide students with access to appropriate and timely information, support and guidance to ensure that they are able to benefit fully from their time at LJMU. All students are assigned a Personal Tutor to provide academic support and when necessary signpost students to the appropriate University support services.

Students are able to access a range of professional services including:

- Advice on practical aspects of study and how to use these opportunities to support and enhance their personal and academic development. This includes support for placements and careers guidance.
- Student Advice and Wellbeing Services provide students with advice, support and information, particularly in the areas of: student funding and financial matters, disability, advice and support to international students, study support, accommodation, health, wellbeing and counselling.
- Students studying for an LJMU award at a partner organisation will have access to local support services

Methods for evaluating and improving the quality and standards of teaching and learning

Student Feedback and Evaluation
The University uses the results of student feedback from internal and external student surveys (such as module evaluations, the NSS and PTES), module evaluation questionnaires and meetings with student representatives to improve the quality of programmes.

Staff development
The quality of teaching is assured through staff review and staff development in learning, teaching and assessment.

Internal Review
All programmes are reviewed annually and periodically, informed by a range of data and feedback, to ensure quality and standards of programmes and to make improvements to programmes.

External Examining
External examiners are appointed to programmes to assess whether:

- the University is maintaining the threshold academic standards set for awards in accordance with the FHEQ and applicable subject benchmark statements
- the assessment process measures student achievement rigorously and fairly against the intended outcomes of the programme(s) and is conducted in line with University policies and regulations
- the academic standards are comparable with those in other UK higher education institutions of which external examiners have experience
- the achievement of students are comparable with those in other UK higher education institutions of which the external examiners have experience

and to provide informative comment and recommendations on:

- good practice and innovation relating to learning, teaching and assessment observed by external examiners
- opportunities to enhance the quality of the learning opportunities provided to students

Please note:
This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content, teaching, learning and assessment methods of each module can be found in module and programme guides.